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Solitary-like waves in boundary-layer flows
and their randomization

By E. V. BOGDANOVA-RYZHOVA AND O. S. RYZHOV

Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Troy, NY 12180-3590, USA

Essentially nonlinear motions generated in incompressible boundary layers by exter-
nal agencies are considered. A pertinent mathematical model for the Blasius flow
is furnished by the forced Benjamin—-Davis—Acrivos integral-differential equation. A
steady hump is chosen as a simplest source in order to trace the disturbance-pattern
evolution as the roughness height increases, provided that its length is kept fixed.
Occurence of bifurcation phenomena features this problem; the first publication gives
rise, in particular, to a specific regime with nearly limit-cycle-type oscillations in the
immediate vicinity of the hump. After the second bifurcation studied, the nearly pe-
riodic regime collapses into irregular pulsations with erratic sequences of amplitudes
and characteristic times. A brief discussion based on the forced Korteweg—de Vries
equation lends credence to the view that the chaotically transitional process can be
triggered at an earlier stage of wave amplification.
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1. Introduction

Nonlinear stages of the Tollmien—Schlichting (Ts) wave development, in incompress-
ible boundary layers of different kinds, play a key role in understanding the mecha-
nisms behind the onset of random elements in fluid motion before laminar /turbulent
transition. The first stage sets in very rapidly and is governed by the weakly non-
linear theory — the basic concepts of which have been advanced in general terms by
Landau (see, for example, Landau & Lifshitz 1944) and, as applied to shear flows,
worked out in great depth by Stuart (1960). The resonant-triad interaction (Craik
1971) is an extension of this theory to three-dimensional disturbances giving rise
to the N-route to transition, observed by Kachanov et al. (1977) in wind-tunnel
tests. A more sophisticated consideration of N-breakdown, with references to many
original results, ensuing, in particular, from the Floquet approach, is available in
Kachanov et al. (1993). However, it seems likely that essentially nonlinear proper-
ties of the disturbance-amplification process may come first whilst a strong ‘three
dimensionalization’ of the velocity field begins to manifest itself at some position fur-
ther downstream if an initial weak TS harmonic wave train is artificially excited in a
boundary layer under carefully controlled conditions (Kachanov et al. 1989). Thus, a
two-dimensional oscillation pattern yields not only the simplest mathematical model
of the second truly nonlinear stage but is closely related to experimental findings as
well (Kachanov et al. 1993). The further build-up of the wave amplitude in these
circumstances terminates in the K-route to transition, discovered by Klebanoff (see,
for example, Klebanoff et al. 1962).
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Theoretically, the second stage has been independently analysed by Zhuk &
Ryzhov (1982) and Smith & Burggraf (1985) on the assumption that the non-
dimensional pressure variations range up to O(A?), e = Re™'/® < A < 1 and the
velocity field remains two dimensional when the Reynolds number Re tends to infin-
ity. Then, upon introducing appropriately scaled variables, the problem is reduced
to a system of equations,

ou  Ov ou ou ou dp  Op

—+—=0, —Htu—*Fv7—=—7, =

or 0Oy ot Oz Ay oz’ Oy
controlling, to leading order, the disturbance pattern within a thin adjustment sub-
layer. Here t is the time; x, y designate the Cartesian coordinates with = being aligned
with the direction of an oncoming stream; u, v are the velocity components; and p de-
notes the excess pressure. The limiting conditions, as the normal coordinate y — oo,
read

0, (1.1)

. 0A dA  -0A  dp
—A — —— —A— - = 1.2
“ I L A or Ox (1.2)
For an incompressible Blasius boundary layer, the self-induced pressure entering
(1.1), (1.2) is related to the unknown instantaneous displacement thickness A = —A
through
1 [~ 0A/0X
t,r) = — ——(t, X)dX. 1.3
pta) = [ R (1.3

It is casy to verify that the limiting conditions (1.2) provide an exact solution to
(1.1), regardless of the dependence of p on A. Thus, what still remains to be done,
if we confine ourselves to analysing free oscillations in the adjustment sublayer on a
flat plate, is to meet the slip condition v = 0 at y = 0. Then, substituting (1.3) for
p results in the Benjamin-Davis—Acrivos (BDA) integral-differential equation

0A | jOA 1 (% 9?A/0X*

ot * or = / X -z
determining the displacement-thickness evolution in time and distance along the solid
surface. This famous equation derives its name from Benjamin (1967) and Davis &
Acrivos (1967). The BpA equation was applied in Kachanov et al. (1993) to shed
new light upon the appearance of sharp narrow spikes, on the velocity oscilloscope
traces, which are characteristic of the K-route to breakdown. An explanation for the
spikes in terms of BDA-soliton properties, which proved to be in close agreement with
the results of wind-tunnel tests, lent credence to the suitability of (1.4) for studying
bursting phenomena before the onset of transition.

Let us turn to an essentially nonlinear receptivity problem assuming again that
the pressure-oscillation amplitude amounts to as high as O(A?). In this range of
disturbance sizes, (1.1) hold true, whereas (1.2) yield a solution which automatically
satisfies the limiting conditions at the upper reaches of the adjustment sublayer as
y — oo. The wave motion is supposed to be excited by a local roughness y = v (¢, z),
—b < x < b on an otherwise flat plate y = 0. Then, instead of v = 0 at y = 0, a
constraint

dx (1.4)

— 00

Oyw | Oyw
T
is met at the rough surface. Substituting (1.2) and (1.3) into (1.5) and replacing the

(1.5)
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Solitary-like waves in boundary-layer flows 391
displacement thickness by A = —A= Yw + flw, we arrive at the inhomogeneous BDA
equation

0A 0A, 1 [~ 0%A,/0x*

—— 4+ Ay— = — ———dX — f, .

ot T o w/_oo X—a / (1.6)

1 [ 8%y, /0X?
= - ——dX. 1.7
f=o [ TR (17)
Here the forcing term f (¢, z) discloses the mechanism through which the disturbance
emission is driven by changes occuring in the surface shape. With y,, =0, A = —A,,,

and (1.4) is retrieved. In what follows, the roughness is regarded to be a hump; in this
case, two bifurcations, accompanied by the appearance of erratic elements in fluid
motion, feature the wave-generation process. Oscillations excited by dents exhibit
similar distributions in space when the forcing amplitude is varying; for that reason
they are left beyond the present discussion.

The forced BDA equation in the form of equation (1.6), as well as the forced KdV
equation, have been used primarily in describing waves emitted and sustained at
nearly resonant conditions, with applications to atmospheric (lee disturbances be-
hind a mountain ridge) and oceanic (tidal flows over sills) phenomena. The recent
papers by Grimshaw & Smyth (1986), Camassa & Wu (1991a,b) and Mitsudera &
Grimshaw (1991) give an idea of the state of the art in this field, whereas comparisons
between some theoretical predictions and experimental data are available in Lee et
al. (1989). However, it is worth keeping in mind that the forcing term controlling the
atmospheric and oceanic wave generation is defined in a different way than in (1.7).

2. General statements

We begin by discussing some properties inherent in the forced BDA equation which
come as simple extensions of the corresponding propositions known for the homoge-
neous equation.

Property 1. Let the forcing term on the right-hand side of (1.6) be f = 9P/0z,
where a periodic function
ay Qo

P= 1— Acosé 2(1— Acos€)?’

E=kr —wt (2.1)

depends on five arbitrary constants w, k, ai, as and A. There then exists a periodic
solution

ba
=b - — 2.2
Av=bi 1— Acosé (2:2)

with coefficients b; and b, given by

b= o —E i a k- aryefiy P
TR T O] Ty 2T K2(1 — A2) '

If a; = as = 0 in (2.1), i.e. the forcing agency becomes zero, we find from (2.3) the
same values of b; and by as those entering a solution to the homogeneous equation
(Benjamin 1967).

Phil. Trans. R. Soc. Lond. A (1995)
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Property 2. An algebraic solitary-wave-type solution can be derived by passing,
n (2.1)—(2.3), to a limit as £ — 0, A — 1 with

w (1 — A%)1/2 a as
T, T —y, =, 22—

P k k220 k21— A2)

preserved invariant. The final result is cast in the form

C1 2c3cy
p_ _ 2.4
A+ (x—ct)? [+ (z—ct)?)? (24)
~ ¢l 2co[1 + (1+ ¢2)'/?]
A, = o - 2.5
€t t ol 1+ ) &+ (z—ct)? (25)

With the phase speed ¢ = 0, (2.4) and (2.5) provide a steady solution.

Property 3. Let the forcing f(¢,x) be expressed through the Hilbert integral (1.7)
of 8%y, /0x?%, where y,,(t, ) stands for the local roughness shape. On the assumption
that a solution vanishes sufficiently fast as x — Foo, a relation

2 2 (&)
/ / ayw/ax dx, M:/ A, da (2.6)

holds, which implies that the conservation law M = My = const. for the correspond-
ing homogeneous equation. Note that the ‘mass’ of a soliton propagating against a
zero background (c+cy ' = 0) in the absence of forcing (¢; = ¢y = 0) is M = 4, i.e.
is independent of its amplitude and phase speed (Benjamin 1967).

Property 4. It is known that the homogeneous BDA equation is invariant against
a group of affine transformations t — %t, x — Bz, A — 71 A. In what follows, the
forcing is specified as yy, = og(t/to)h(x/b) with a time-dependent multiplier g = 0
if t < 0. As for positive t, we assume g to be a monotonically increasing function
on the interval 0 < t < ¢y becoming g = 1 with ¢t > t3. Applying the same affine
transformation, where 3 = b, to (1.6) and (1.7) yields

04, 0A, 1 [™ %A, 0X? Q (t\ [ d%h/dX?
o Mo _;/_w X -z dX__g<To)/ X-—p % @7

The two similarity parameters @ = ob and Ty, = to/b?, appearing here in place
of the original three parameters o, tg and b, define the similarity law for all ¢ and
z. However, at any sufficiently large moment ¢ > Tj, the perturbed motion must
become effectively independent of the second parameter Ty, owing to the fact that
g = 1, according to our assumption. Thus, the only similarity parameter ) turns out
to be responsible for characteristic features of the oscillation pattern at later stages
after switching on the disturbance source.

3. Flow-field bifurcation at 3.92 < @ = Q] < 3.93

In all computations carried out so far, the function g was simply put equal to
t/to (in original variables). So, both upstream- and downstream-propagating waves
evolved from the initial data A,, = 0. The pseudo-spectral method of Burggraf &
Duck (1982), based on applying a fast Fourier transform in z to the forced BpA
equation, appears to be pertinent for solving it numerically. An attempt in Zhuk

Phil. Trans. R. Soc. Lond. A (1995)
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Solitary-like waves in boundary-layer flows 393

& Popov (1989) to evaluate solutions using a finite-difference scheme was appar-
ently not successful. Another version (due to Fornberg & Whitham (1978)) of the
pseudo-spectral method has been utilized by Mitsudera & Grimshaw (1991) in their
computation of internal gravity waves. The shape of a local roughness (again in
original variables) was prescribed as h = o cos® mx/b, —b < x < b, whereas g = 0
for both x < —b and = = b. Computationally, it proved to be convenient to take
to = 1 and b = 3.5. Within these limitations, an extensive study has been carried
out for a broad range of the similarity parameter @) taking on both positive and
negative signs. However, being pressed for space, we concentrate below on discussing
the wave generation by humps with ¢ > 0; results for dents specified by @ < 0 will
be reported elsewhere. As mentioned in the introduction, wave systems generated by
dents do not reveal bifurcations and are similar for all Q).

Special care was taken in estimating the error involved in the calculations set forth
below. The step size Az in z and a number N of Fourier modes in the spectral space
proved to be highly dependent on a typical magnitude of @); they were halved and
doubled, respectively, until the accuracy of the final results was confirmed. In some
runs, Az was held as low as 0.01 and N reached a value of 2!*. However, these ex-
tremes entailed an enormous increase in CPU time. Another way to provide a check
upon the accuracy of the computation was to compare the oscillatory distributions
of A, evaluated numerically at large distances downstream of an obstacle, with os-
cillatory distributions ensuing from linear analysis. A version of the pseudo-spectral
method used turned out to be well suited for minimizing a difference between the
two approaches in question. However, only central parts of spatial distributions of A
at fixed values of time are presented below, as our main concern is with nonlinear
properties of the wave-generation process.

In order to illuminate the statement that the value of a parameter () = ob defines
the disturbance-pattern features, let us trace how strong they change when @ is
varying in a narrow interval (3.92 < @ < 3.93) that contains a threshold value
@ = Q7. The very existence of Q7 can be easily established from a consideration
of the mass M~ = M~ (¢) transported by a wave system upstream of the obstacle
(—o0 <z < —3.5). As seen from the plot of M~ /47 presented in figure 1, a solution
for @) = 3.92 inherent in the subcritical regime I with @ < Q7 suffers stability loss
if the controlling similarity parameter increases by only 0.01 and becomes @) = 3.93.
Obviously, a new solution arising from bifurcation must be endowed with completely
different properties, this solution is typical of the supercritical regime II specified
by @ > Qf. According to computed results, bifurcation takes place at an instant
t =t} ~ 150 (referred to as the incipient transition time) when M~ (t}) ~ 4x. So,
at t = ¢} the mass of disturbances advancing upstream of the local roughness is
approximately equal to the mass of the algebraic soliton (Benjamin 1967).

The flow field development in the subcritical regime I at the threshold of bifurca-
tion can be elucidated by putting @ = 3.92. The distribution of the instantaneous
displacement thickness A = y,, — A, over z at t = 600 for this case is shown in
figure 2, where the first solitary-like wave propagating upstream appears in the well-
shaped form, whereas the second is generated just in the vicinity of the disturbing
source. The amplitude of the leading solitary wave is approximately twice as large as
the disturbance size immediately above the roughness. The way in which A varies in
this region is crucial for the overall process of the solitary-wave emission. As shown in
figure 3, Ay (t) = A(t,0) drastically drops shortly after triggering the external agency
and then gradually changes around Ag(t) ~ 0.5 that can be roughly regarded as a

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. The mass M~ transported by the wave system upstream of the hump as a function
of time t: —, Q = 3.92; ---, 3.93.

-200 -100 0 100 200 300 400 500
X

Figure 2. A distribution of the displacement thickness A over distance z in the subcritical
regime I Q = 3.92, ¢t = 600.

mean value. The slack run of Aq(t), with smooth variations confined to a very narrow
band, is at the heart of a large period T' ~ 200 of solitary-like wave radiation. These
waves are of moderate amplitude and move slowly against the oncoming stream; they
play an important part in atmospheric phenomena (Mitsudera & Grimshaw 1991).
On the contrary, the wave system downstream of a local uneveness is of primary
concern in boundary-layer study. As distinguished from the region located upstream,
the disturbance field here begins with a long oscillatory ‘tongue’ of small amplitude
which terminates in solitary-like waves. The short distance between the oscillatory
motion and the solitary waves is occupied by weak pulsations of a transitional type.
The disturbance system as a whole is separated from the roughness by a depression
containing smooth variations of A(t,z) which slowly spreads downstream. The de-
pression area serves as a background for solitary waves to gradually evolve from the
last cycles bringing up the rear of the modulated oscillatory tongue. As seen from
(2.4) and (2.5) with ¢; = ¢ = 0, the algebraic solitons by Benjamin (1967) can
travel in the direction of the oncoming stream only against a negative background.
If the background becomes zero, the phase speed ¢ = —c;! < 0; in this case solitons
propagate upstream. Thus, formation of the depression area serves as an important
condition for solitary-like waves to arise at the tail-end of the modulated oscillatory

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. The displacement thickness Ao at the centre of the hump as a function of time ¢ in
the subcritical regime It Q = 3.92.

motion. As inferred from figure 2, solitary waves travelling in the opposite directions
(upstream and downstream) emerge in pairs, albeit the time and place of their birth
are hardly defined owing to the long period of this process.

When the value of the similarity parameter increases above Q) = @7, the flow field
changes drastically. However, it is advisable to choose @) = 5.5, for example, rather
than put Q = 3.93, with the objective of eliminating the long evolution inherent in
the subcritical regime I during the incipient transition time tj. With ¢ = 5.5, the
first solitary-like wave is emitted upstream at ¢ =~ 20 (cf. t§ ~ 150 if Q@ = 3.93).
An overall picture of oscillations developed by ¢ = 50 with this particular value
of @ = 5.5 is shown in figure 4. As it might seem at a glance, the disturbance
pattern closely resembles that presented in figure 2, except for much larger values
of A(t,z). There are solitary waves upstream of the roughness, whereas a more
complicated system downstream consists of a small-amplitude oscillatory tongue, a
short zone of transitional-type pulsations and solitary waves evolved in the course of
the transitional process. A depression region with smooth variations of A(¢, z) behind
the obstacle again serves as a background allowing solitary waves to be formed from
the tail-end cycles of the modulated oscillatory motion. One more function of the
depression is to compensate for the mass radiated upstream.

Nevertheless, there exists a crucial distinction between the two regimes in question,
which manifests itself primarily in the behaviour of disturbances immediately over
the hump (—3.5 < z < 3.5). In order to shed light on the mechanism behind the fast
solitary-wave production in the supercritical regime II, let us turn again to the plot
of Ap(t). As figure 5 exhibits, the slack run of this curve when @ = 3.92 gives way
to vigorous peaky-type pulsations of a nearly constant period T' ~ 18 for ) = 5.5.
As a result, the amplitude of the leading solitary wave advancing upstream drops
to less than half as low as the size of each peak. However, this amplitude exceeds
the amplitude of an analogous solitary-like wave in figure 2 by a factor of about
four. In keeping with an increase in size, the propagation speed of solitary waves
in the supercritical regime II also gets enhanced several times, so that they are
capable of moving fast enough against the oncoming stream. The same statement
holds true with regard to the solitary-like waves sweeping downstream at the rear
of the modulated oscillatory tongue; their amplitude, reckoned from the depression
level, proves to be of the same order as the amplitude of disturbances ahead of the
local roughness. One more feature is recognizible and worthy of note in the run of

Phil. Trans. R. Soc. Lond. A (1995)
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T T T T

-50 0 50 100
X

Figure 4. A distribution of the displacement thickness A over distance z in the supercritical
regime II: Q = 5.5, t = 50.

S

0 20 40 60 80 100 120
t

Figure 5. The displacement thickness Ag at the centre of the hump as a function of time ¢ in

the supercritical regime II: Q = 5.5.

a curve in figure 5: a sharp drop of Ay(t) within each oscillation cycle experiences a
small kink before reaching the minimum value.

To further illustrate fundamental properties of the nearly periodic process in the
vicinity of the hump, figure 6 provides its phase portrait in a plane (Ao, Ay = dA, /dt)
for values 5.5, and 7.5 of the similarity parameter (). In all three cases, we have a
region in the form of a narrow closed strip filled by oscillation coils. This loop-shaped
region rapidly stretches as ) grows, giving rise to the second tiny loop in its lower
part, not far from the origin. The cause for the lesser loop to gradually emerge is
directly related to evolution of a kink in Ay (¢) mentioned above. With @) fixed, the
oscillation process bears similarities to a limit cycle, but departs from this since the
frequencies associated with coils inside any one of the narrow bands in figure 6 are
slightly varying. On the other hand, the BDA equation belongs to dynamical systems
of Hamiltonian form (Case 1980). As such, it cannot exhibit limit cycles, defined in
the strict sense, among attracting sets.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 6. The phase portrait of oscillations at the centre of the hump in the plane (Ao, Ao) for
@ = 5.5 and 7.5.

4. Gradual evolution of disturbance pattern

The flow field undergoes a smooth evolution when the similarity parameter
grows step by step in the range Q7 < @ < @3, the latter being a value defining
the next bifurcation. According to computed results (see below), Q% is fixed by
inequalities 51.48 < Q% < 51.49. Owing to space limitations, we skip any in-depth
discussion of the wave-system properties as a function of z at different ¢. The only
point to be nevertheless mentioned is that the solitary-wave train upstream of a
hump creates an inherent positive background clearly discernible even at the initial
stage in figure 4. This background is, by no means, uniform and the amplitudes
of solitary-like waves are equal, as might be inferred from Zhuk & Popov (1989),
where the emission of BDA solitary waves upstream of an obstacle was probably first
reported. An extensive study of this phenomenon for the range of () under discussion
can be found in Mitsudera & Grimshaw (1991).

The key element of gradual evolution when Q7 < @ < @3 comes from alterations
occuring in the form of vigorous pulsations immediately over the hump. As before,
the process is best characterized by a plot of Ap(t) given in figure 7 for @ = 51.48.
From a comparison between figures 5 and 7, we observe that a peak surmounting each
oscillation cycle with @ = 5.5 becomes of larger size and much more clear cut when
() amounts to 51.48. A nearly constant period of oscillations shortens from T ~ 18
to T =~ 3.2, respectively. A small kink on the leeward slope of a peak in figure 5
transforms into a spike within the same cycle in figure 7. This spike is situated just
in the middle of two main neighbouring peaks. The role of the spike is crucial for the
subsequent bifurcation to occur. Each oscillation cycle gives rise to a solitary wave,
carrying the mass Mgy ~ 47 in the region upstream of the hump. Simultaneously,
a gently sloping disturbance with M™ a~ —4r is brought into the depression zone
extending downstream.

Figure 8 gives the phase portrait of the nearly periodic process using coordinates
Ag and Ag. As in figure 6, the process is mapped onto a region in the form of a narrow
strip filled by oscillation coils. However, there is an important distinction between
the two types of phase-plane portraits since small spikes, alternating with the main
peaks in the distribution of A(t,z) for A = 51.48, result in another extremely thin
band imbedded in the primary larger-sized loop. The origin of the band is clearly
recognizable in a tiny loop emerging and slowly developing in the phase-plane por-
traits, illustrated by figure 6. As a consequence, a double-loop-shaped region serves

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 7. The displacement thickness Ag at the centre of the hump as a function of time ¢ in
the subcritical regime III: Q = 51.48.
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Figure 8. The phase portrait of oscillations at the centre of the hump in the plane (Ao, AO) for
Q = 51.48.

as an image of the vigorous pulsation process at the threshold of the next bifurca-
tion, when the supercritical regime II turns to subcritical regime III. In keeping with
Smith (1988), peaky-type disturbances in boundary-layer flows can eventually termi-
nate in the near-wall tier eruption. Therefore, evolution of the oscillation cycle at the
hump crest towards sharpening variations of A, with ) growing, is highly conducive
to the breakdown of laminar motion and accelerates the onset of transition.

5. Flow-field bifurcation at 51.48 < Q = Q)5 < 51.49

In order to reveal this bifurcation in the simplest way, let us consider once more the
mass M~ = M~ (t), transported by the wave system in the region —oo < x < —3.5
upstream of the obstacle. Figure 9 attests to a sudden jump in the mass-production
rate if the controlling similarity parameter ) = 51.48, characteristic of the subcritical
regime III, increases by 0.01 and becomes () = 51.49. This change can be attributed
to the supercritical regime IV coming in place of the subcritical regime III at the
incipient transition time ¢5 ~ 11. The value ¢} is made up of a period t; = 1 of
triggering the disturbing source and a span of about three cycles of the subcritical
regime III which persists until bifurcation. Hence, we have, M~ (t5) = 3Mgy ~ 127.
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15 f | | | ]

Figure 9. The mass M~ transported by the wave system upstream of the hump as a function
of time t: —, @ = 51.48; - -+, 51.49.
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Figure 10. A distribution of the displacement thickness A over distance x in the supercritical
regime IV: Q = 70, t = 10.

Key properties of the supercritical regime IV along with a new mechanism at the
heart are set forth below.

We may visualize a more complicated motion in physical space from figure 10
drawn for @) = 70 at t = 10. The overall wave system generated in this case bears
certain similarities to that shown in figure 4, where () = 5.5, and even to the distur-
bance pattern in figure 2 with @@ = 3.92. A solitary-wave train is seen to propagate
upstream of the hump against an intrinsic positive background, whereas the region
on the leeward side involves a modulated oscillatory tongue, a few solitary-like waves
arising at its tail-end, as well as a depression area spreading between the last of these
waves and the obstacle. Of course, the swing of oscillations is large compared with
the typical size in the subcritical regime III, especially immediately over the dis-
turbing source confined to —3.5 < x < 3.5. However, the basic distinction derives
from the nature of disturbance distribution in the wave systems both upstream and
downstream of the hump. They seem to be not as well-organized as for lesser values
of Q < @3, the double-peaky large-amplitude burst over the hump points to the
same conclusion.

The latter is clearly substantiated by inspecting the behaviour of Aq(t) with the
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Figure 11. The displacement thickness Ao at the centre of the hump as a function of time ¢ in
the supercritical regime IV: @ = 70.

same value () = 70 as t increases. A remarkable alternation of main peaks and spikes,
peculiar to figure 7 for () = 51.48, changes, if Q = 70, to a distribution in figure 11,
where peaks and spikes accompanied by kinks come in an erratic manner rather than
being governed by an apparent rule. What is more, the distinctions between spikes
and kinks are hardly discernible. The reference time of this aperiodic process reduces
roughly to T' ~ 1.5, compared with a nearly constant period T~ 3.2 of oscillations
when @) = 51.48. Some further growth in the amplitude of Ag(t) is also observable
but does not manifests itself in dramatic form. )

On the contrary, the phase portrait of the process in the plane (Ag, Ag) is dras-
tically modified; from narrow closed strips in figure 6 specified by @ = 5.5 and 7.5
to a wide region in figure 12 drawn for Q = 70. Large-sized coils and small loops
produced by peaks, spikes and kinks superimpose in a subdomain located near the
origin. So, the nearly periodic process over the hump, typical of the subcritical regime
III, collapses into irregular pulsations with erratic sequences of amplitudes and char-
acteristic times when passing through a bifurcation value @@ = Q%. As to the nature
of the sequences which feature the supercritical regime IV, no decisive conclusion
may be inferred on the basis of the computed results. However, abrupt sharpening
variations of A mediates the onset of bursting phenomena (Smith 1988).

6. Randomization onset

The following brief discussion pursues the aim of providing evidence that the onset
of random disturbances in the form of ‘Hamiltonian chaos’ is inherent in the solitary-
wave stage of fluid motion. To simplify the problem we address a viscous flow past a
plate mounted vertically in the gravity field and heated. The solitary-wave stage of
disturbance propagation obeys, in this case, the KdV equation, which was pointed
out by Korteweg & de Vries as far back as 1895 in the context of shallow water
waves. In keeping with Zhuk & Ryzhov (1982) and Smith & Burggraf (1985), the
homogeneous KdV equation is obtainable from (1.1) and (1.2), with p related to A
through p = —92A/0x?, instead of (1.3). Taking advantage of this interaction law, we
can extend the analysis presented in the introduction and derive the aforementioned
equation with a forcing term f = 8%y, /02* coming in place of (1.7) if the shape
of an uneven wall is fixed by y = y,(t,z). For instance, let the wall be flexible
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Figure 12. The phase portrait of oscillations at the centre of the hump in the plane (Ao, Ao)
for @ = 70.

and slightly disturbed by a travelling wave sweeping downstream. Then the wavy
plate serves as an external agency f = f(kx — wt) = 3y, (kx — wt)/0x3 for the
fluid motion in a boundary layer adjacent to the solid base. Presumably, the forced
KdV equation first appeared in related studies on the flow of a stratified fluid over
topography (Grimshaw & Smyth 1986) and surface waves in a shallow water channel
(Camassa & Wu 1991a, b). Note that the simplest way to reproduce and observe the
process of solitary or periodic wave interaction with convected forcing is likely to use
a water tank as an experimental setup (Davis & Acrivos 1967; Lee et al. 1989) leaning
upon the mathematical analogy between the boundary-layer and deep/shallow-water
nonlinear disturbances.

As we see, physical problems governed by the BDA and KdV equations are very
similar in nature; both arise in an attempt to shed more light on an essentially
nonlinear stage of wave propagation in boundary-layer flows before transition. From
the purely mathematical viewpoint, these integrable evolution equations have many
properties in common: multi-periodic and multi-soliton solutions, pole expansions in
a complex plain, an infinitely large number of conservation laws, Lax pairs, inverse
scattering transforms, etc. For an in-depth discussion see, for example, Ablowitz &
Clarkson (1991). On the other hand, dynamical-systems theory is directly appli-
cable to analysing a broad class of solutions to the forced KdV equation insofar
as dispersion is expressed in the latter case in terms of the third derivative rather
than a Hilbert integral of a desired function. So, information gained from this study
can provide useful guidelines for investigating forced oscillations controlled by the
inhomogeneous BDA model.

With a forcing term, taken in the form f = f(kz — wt), the KdV equation admits
a similar travelling-wave-type solution Ay, = F(kz — wt). On applying the aforemen-
tioned affine transformation, F' is obtainable from a system of two first-order differ-
ential equations

dF 0H . dF  0H
€ - oF 1 aE T ap - Wl HOHLE), (6.1)
with I, = sin&, £ = z — t standing for a harmonic excitation normalized by 6 and
H = Ho(F,F) + 6H (&, F) = LF? 4+ JwF? — LF® — OF — 6F I, (€) (6.2)

being a Hamiltonian function. The model (6.1), (6.2) describes nonlinear oscillations
of a pendulum with quadratic stiffness and no friction.
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A phase-plane portrait of (6.1), (6.2) with 6 = 0 includes a centre C': F, =
w — (w? —2C)'/2, I, = 0 surrounded by a nested family of closed orbits, and a sad-
dle S: F, = w+ (w? — 20)"/2, I, = 0 with an alpha-shaped separatrix loop passing
through it. It is remarkable that the loop is an image of the KdV soliton (Drazin &
Johnson 1989)

2 _ 1/2 ) 2 _ 3/4 4, 2 _ 1/4
3(w 220) = 3(w 2?) Shr)7 . (w* —2C) 57 (6.3)
ch”n ch’n 2

which moves downstream against the positive background F' = F; > 0. The sepa-
ratrix loop may be considered as the base of a cylindrical surface with generators
parallel to the £-axis in the three-dimensional phase space. When 6 # 0, this surface
splits into the stable W(6) and unstable W, (§) manifolds, the relative locations of
which control the dynamics of the system (6.1), (6.2). A Mel'nikov function, which
measures the distance between Wi(6) and W, (6), is defined by (Guckenheimer &
Holmes 1983)

Fsol:Fs_

Hoo) = [ {HalPa@ Bal@) 11 [e+ 2 Ra(©)] } de, (6)
where the braces denote canonical Poisson brackets. Perturbation calculations in
(6.4) are supposed to rely on the initial soliton solution (6.3). Taking advantage
of expressions for both H(F, F') and Hy(, F') ensuing from (6.2), yields (Burov &
Ryzhov 1992)

J(po) = 12msh(w? — 2C)~4ch 27 (w? — 20) Y4 — 1] cos . (6.5)

Thus, the Mel'nikov function possesses an infinite set of simple zeros o = (n+ 1),
n=...,—1,0,1,... with a consequence that W,(8) and W, () intersect indefinitely
many times. This fact is embodied in a Poincaré map illustrated by figure 13, where
the homoclinic tangle contains a wide variety of different trajectories. They determine
the complex dynamics of the Hamiltonian system (6.1), (6.2) in spite of its apparent
simplicity.

A far more gentle analysis is needed when considering the splitting of closed peri-
odic orbits around the centre C' in the phase plane (F, F') in response to a periodic
forcing. The vanishing of the Mel'nikov function along an orbit, such that the cor-
responding free-oscillation frequency is rationally commensurable with the forcing
frequency, points to the existence of a subharmonic resonance. The presence of the
homoclinic tangle here leads to complex dynamics within a subharmonic resonance
band. A ‘beyond all orders’, or exponentially small version, of the Mel'nikov function
has been recently shown by Scheurle et al. (1992) to provide a legitimite mathematical
tool for justifying the existence of the homoclinic tangle associated with a subhar-
monic resonance. The Poincaré map in figure 13 gives a good idea of the homoclinic
tangle close to a periodic orbit.

The conclusion of conceptual importance from a complete analysis of trajectories
within the homoclinic tangles of both types is with regard to the development of
dynamics referring to as Hamiltonian chaos, which is, meanwhile, not a strange at-
tractor (Guckenheimer & Holmes 1983). The behaviour of the orbits in question is
random. The last statement can be reformulated in terms of the original problem
on disturbances propagating through a heated jet adjacent to a vibrating plate. As
soon as they enter an essentially nonlinear stage, large-sized well-organized structures
would be expected to emerge in the form of solitary waves. Really, as was argued in
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F

Figure 13. The Poincaré map with two homoclinic tangles emerging from the splitting of the
alpha-shaped separatrix and a subharmonic periodic orbit.

the introduction with reference to experimental data from Kachanov et al. (1993),
this is the case as applied to a Blasium boundary layer where the sharp narrow spike
embedded in each oscillation cycle of a nonlinear TS wave train is endowed with soli-
ton properties. Therefore, the breakdown of the high-amplitude disturbance pattern
under the influence of a vibrating plate should be accompanied by the generation of
various more complex forms of motion and, in particular, random pulsations. Thus,
the role played by high-amplitude solitary and periodic waves is twofold: they make
up large coherent structures and, at the same time, can provoke chaotic pulsations
(Ryzhov 1991; Burov & Ryzhov 1992). Both properties of the nonlinear phenomenon
are interconnected and inseparable. Certainly, the above conclusion calls for careful
verification in wind-tunnel tests.
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